Artin Braid Groups and Homotopy Groups
نویسندگان
چکیده
We study the Brunnian subgroups and the boundary Brunnian subgroups of the Artin braid groups. The general higher homotopy groups of the sphere are given by mirror symmetric elements in the quotient groups of the Artin braid groups modulo the boundary Brunnian braids, as well as given as a summand of the center of the quotient groups of Artin pure braid groups modulo boundary Brunnian braids. These results give some deep and fundamental connections between the braid groups and the general higher homotopy groups of spheres.
منابع مشابه
Braid Groups, Free Groups, and the Loop Space of the 2-sphere
The purpose of this article is to describe connections between the loop space of the 2-sphere, Artin’s braid groups, a choice of simplicial group whose homotopy groups are given by modules called Lie(n), as well as work of Milnor [25], and Habegger-Lin [17, 22] on ”homotopy string links”. The current article exploits Lie algebras associated to Vassiliev invariants in work of T. Kohno [19, 20], ...
متن کاملOn Braid Groups, Free Groups, and the Loop Space of the 2-sphere
The purpose of this article is to describe a connection between the single loop space of the 2-sphere, Artin’s braid groups, a choice of simplicial group whose homotopy groups are given by modules called Lie(n), as well as work of Milnor [17, 18], and Habegger-Lin [11, 15] on “homotopy string links”. The novelty of the current article is a description of connections between these topics. 1. A t...
متن کاملSemi-algebraic Geometry of Braid Groups
The braid group of n-strings is the group of homotopy types of movements of n distinct points in the 2-plane R. It was introduced by E. Artin [1] in 1926 in order to study knots in R. He gave a presentation of the braid group by generators and relations, which are, nowadays, called the Artin braid relations. Since then, not only in the study of knots, the braid groups appear in several contexts...
متن کاملArtin’s Braid Groups, Free Groups, and the Loop Space of the 2-sphere
The purpose of this article is to describe connections between the loop space of the 2-sphere, and Artin’s braid groups. The current article exploits Lie algebras associated to Vassiliev invariants in work of T. Kohno [19, 20], and provides connections between these various topics. Two consequences are as follows: (1) the homotopy groups of spheres are identified as “natural” sub-quotients of f...
متن کاملOn Maps from Loop Suspensions to Loop Spaces and the Shuffle Relations on the Cohen Groups
The maps from loop suspensions to loop spaces are investigated using group representations in this article. The shuffle relations on the Cohen groups are given. By using these relations, a universal ring for functorial self maps of double loop spaces of double suspensions is given. Moreover the obstructions to the classical exponent problem in homotopy theory are displayed in the extension grou...
متن کامل